Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.
نویسندگان
چکیده
The aim of this in vitro study was to investigate the effect of low-level laser therapy (LLLT) on the attachment, proliferation, differentiation and production of transforming growth factor-ss(1) (TGF-beta(1)) by human osteoblast-like cells (HOB). Cells derived from human mandibular bone were exposed to GaAlAs diode laser at dosages of 1.5 or 3 J/cm(2) and then seeded onto titanium discs. Non-irradiated cultures served as controls. After 1, 3 and 24h, cells were stained and the attached cells were counted under a light microscope. In order to investigate the effect of LLLT on cell proliferation after 48, 72 and 96 h, cells were cultured on titanium specimens for 24h and then exposed to laser irradiation for three consecutive days. Specific alkaline phosphatase activity and the ability of the cells to synthesize osteocalcin after 10 days were investigated using p-nitrophenylphosphate as a substrate and the ELSA-OST-NAT immunoradiometric kit, respectively. Cellular production of TGF-beta(1) was measured by an enzyme-linked immunosorbent assay (ELISA), using commercially available kits. LLLT significantly enhanced cellular attachment (P<0.05). Greater cell proliferation in the irradiated groups was observed first after 96 h. Osteocalcin synthesis and TGF-beta(1) production were significantly greater (P<0.05) on the samples exposed to 3 J/cm(2). However, alkaline phosphatase activity did not differ significantly among the three groups. These results showed that in response to LLLT, HOB cultured on titanium implant material had a tendency towards increased cellular attachment, proliferation, differentiation and production of TGF-beta(1), indicating that in vitro LLLT can modulate the activity of cells and tissues surrounding implant material.
منابع مشابه
Effect of UV-Photofunctionalization on Bioactivity of Titanium to Promote Human Mesenchymal Stem Cells
Background and Aim: The present study introduces photofunctionalization as a technique for tackling biological aging and increasing the bioactivity of titanium. This in-vitro study evaluated the effects of ultraviolet (UVC) light treatment of titanium surfaces with different time-related changes on the behavior and function of human mesenchymal stem cells (MSCs). Materials and Methods: MSCs we...
متن کاملResponse of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2
PURPOSE The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. METHODS MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were...
متن کاملInvestigation of osteoblast-like cells cultured on nano-hydroxyapatite/chitosan based composite scaffold in the treatment of bone defects and limited mobility
Objective(s): Design and construction of biocompatible and biodegradable scaffolds are among the main goals of tissue engineering. Recently, use of nano-hydroxyapatite as a bioactive bioceramic agent with high similarity to the mineral phase of the human bone tissue, in combination with biodegradable polymers and implant coatings has attracted the attention of researchers in the field of biomat...
متن کاملThe Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast
Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...
متن کاملرفتار سلول استخوان ساز MG-63 بر روی سطح تیتانیم اصلاح شده با محلول اسیدی
The osseointegration of oral implants is related to the early interactions between osteoblastic cells and titanium surface. Chemical surface modification of titanium (Ti) implants is used to improve peri-implant bone growth, bone-to-implant contact, and adhesion strength. Thus, in this study, the surface topography, chemistry, and biocompatibility of polished titanium surface treated with mixe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 26 17 شماره
صفحات -
تاریخ انتشار 2005